• ABSTRACT
    • The pulmonary blood-gas barrier is an extraordinary bioengineering structure because of its vast area but extreme thinness. Despite this, almost no attention has been given to its mechanical properties. The remarkable area and thinness come about because gas exchange occurs by passive diffusion. However, the barrier also needs to be immensely strong to withstand the very high stresses in the capillary wall when capillary pressure rises during exercise. The strength of the thin region of the barrier comes from type IV collagen in the basement membranes. When the stresses in the capillary walls rise to high levels, ultrastructural changes occur in the barrier, a condition known as stress failure. Physiological conditions that alter the properties of the barrier include severe exercise in elite human athletes. Animals that have been selectively bred for high aerobic activity, such as Thoroughbred racehorses, consistently break their pulmonary capillaries during galloping. Pathophysiological conditions causing stress failure include high-altitude pulmonary edema and overinflation of the lung, which frequently occurs with mechanical ventilation. Remodeling of the capillary wall occurs in response to increased wall stress in diseases such as mitral stenosis. The barrier is able to maintain its extreme thickness with sufficient strength as a result of continual regulation of its wall structure. How it does this is a central problem in lung biology.