Rotavirus nonstructural protein 4, the first viral enterotoxin to be identified, is a multidomain, multifunctional glycoprotein. Earlier, we reported a Ca2+-bound coiled-coil tetrameric structure of the diarrhea-inducing region of NSP4 from the rotavirus strains SA11 and I321 and a Ca2+-free pentameric structure from the rotavirus strain ST3, all with a parallel arrangement of α-helices. pH was found to determine the oligomeric state: a basic pH favoured a tetramer, whereas an acidic pH favoured a pentamer. Here, we report two novel forms of the coiled-coil region of NSP4 from the bovine rotavirus strains MF66 and NCDV. These crystallized at acidic pH, forming antiparallel coiled-coil tetrameric structures without any bound Ca2+ ion. Structural and mutational studies of the coiled-coil regions of NSP4 revealed that the nature of the residue at position 131 (Tyr/His) plays an important role in the observed structural diversity.