• ABSTRACT
    • Since most of the toxicity associated with class 1B antiarrhythmic drugs is dose-related, this review examines adverse effects seen in both therapeutic practice and accidental or premeditated overdose. Toxicity is very common with these agents and can be life-threatening. A high percentage of patients must discontinue therapy because of adverse effects. Mexiletine and tocainide are structural analogues of lignocaine (lidocaine) and toxicity is similar with all 3 drugs. With gradual intoxication (the most common form) central nervous system effects such as lightheadedness, dizziness, drowsiness and confusion are seen first. Seizures and respiratory arrest can occur. Cardiovascular toxicity is manifested by progressive heart block, reduced cardiac contraction, hypotension and asystole. Both mexiletine and tocainide may have proarrhythmic effects. Gastrointestinal toxicity is also common. Shock, hypotension, cardiac failure and beta-blocker therapy reduce lignocaine clearance and enhance the risk of intoxication during routine therapy. Both lignocaine and mexiletine elimination is impaired in severe liver disease while tocainide clearance is reduced in renal failure. Management of toxicity is largely supportive and symptomatic. Lignocaine infusion must be discontinued and decontamination of the gut in the case of oral preparations is recommended. Serious intoxication requires intensive care unit admission. Haemodialysis or haemoperfusion may be helpful in serious lignocaine and tocainide poisoning. In institutions where extracorporeal circulatory assistance is available, massive lignocaine poisoning has been successfully treated with this intervention. In the therapeutic setting serious toxicity can be prevented by close clinical surveillance and appropriate dose reduction in patients with reduced drug clearance. Because of the large interindividual variation in lignocaine pharmacokinetic parameters, therapeutic drug monitoring is recommended if results can be reported quickly. Mexiletine and tocainide have stereoselective metabolism and assays do not distinguish the more active isomers. Therapeutic drug monitoring is less useful in this situation.