• ABSTRACT
    • Cerebral stroke is one of the most frequent causes of permanent disability or death in the western world and a major burden in healthcare system. The major portion is caused by acute ischemia due to cerebral artery occlusion by a clot. The minority of strokes is related to intracerebral hemorrhage or other sources. To limit the permanent disability in ischemic stroke patients resulting from irreversible infarction of ischemic brain tissue, major efforts were made in the last decade. To extend the time window for thrombolysis, which is the only approved therapy, several imaging parameters in computed tomography and magnetic resonance imaging (MRI) have been investigated. However, the current guidelines neglect the fact that the portion of potentially salvageable ischemic tissue (penumbra) is not dependent on the time window but the individual collateral blood flow. Within the last years, the differentiation of infarct core and penumbra with MRI using diffusion-weighted images (DWI) and perfusion imaging (PI) with parameter maps was established. Current trials transform these technical advances to a redefined patient selection based on physiological parameters determined by MRI. This review article presents the current status of MRI for acute stroke imaging. A special focus is the ischemic stroke. In dependence on the pathophysiology of cerebral ischemia, the basic principle and diagnostic value of different MRI sequences are illustrated. MRI techniques for imaging of the main differential diagnoses of ischemic stroke are mentioned. Moreover, perspectives of MRI for imaging-based acute stroke treatment as well as monitoring of restorative stroke therapy from recent trials are discussed.