All cells comprising the skeleton-chondrocytes, osteoblasts, and osteoclasts-contain both the vitamin D receptor and the enzyme CYP27B1 required for producing the active metabolite of vitamin D, 1,25 dihydroxyvitamin D. Direct effects of 25 hydroxyvitamin D and 1,25 dihydroxyvitamin D on these bone cells have been demonstrated. However, the major skeletal manifestations of vitamin D deficiency or mutations in the vitamin D receptor and CYP27B1, namely rickets and osteomalacia, can be corrected by increasing the intestinal absorption of calcium and phosphate, indicating the importance of indirect effects. On the other hand, these dietary manipulations do not reverse defects in osteoblast or osteoclast function that lead to osteopenic bone. This review discusses the relative importance of the direct versus indirect actions of vitamin D on bone, and provides guidelines for the clinical use of vitamin D to prevent/treat bone loss and fractures.





Polls results
1

On a scale of 1 to 10, rate how much this article will change your clinical practice?

NO change
BIG change
0% Article relates to my practice (0/0)
0% Article does not relate to my practice (0/0)
0% Undecided (0/0)
2

Will this article lead to more cost-effective healthcare?

0% Yes (0/0)
0% No (0/0)
0% Undecided (0/0)
3

Was this article biased? (commercial or personal)

0% Yes (0/0)
0% No (0/0)
0% Undecided (0/0)
4

What level of evidence do you think this article is?

0% Level 1 (0/0)
0% Level 2 (0/0)
0% Level 3 (0/0)
0% Level 4 (0/0)
0% Level 5 (0/0)