• ABSTRACT
    • In humans, like as in other mammals, the gonads, the internal genital ducts, and the external genital structures all develop from bipotential embryologic tissues. Male or female phenotype develops through a cascade of processes which initiate with sex determination and follow with sex differentiation. The karyotype (46, XY or 46, XX) of the embryo (genetic sex) determines whether primordial gonad differentiates into a testis or an ovary, respectively (gonadal differentiation). A Y-related gene, SRY, acts as a switch signal for testis differentiation. Testis development process involves several steps controlled by other non-OY-linked genes, such as Wilms tumor gene 1 (WT1), EMX2, LIM1, steroidogenic factor 1(SF-1), SRY box-related gene 9 (SOX9). Since other genes, such as Wnt-4 and DAX-1, are necessary for the initiation of female pathway in sex determination, female development cannot be considered a default process. Hormonal production of differentiated gonads is relevant for differentiation of the internal and external genitalia during fetal life, and for the development of secondary sex characteristics at puberty. Antimullerian hormone (AMH) secreted by Sertoli cells inhibits the development of female internal genitalia (tube, uterus, upper part of vagina); testosterone secreted by Leydig cells induces stabilization of wolffian ducts and development of internal male genitalia. Differentiation of external male genitalia requires the transformation of testosterone to dihydrotestosterone by 5alpha reductase type 2 expressed in genital skin and urogenital sinus. The effects of androgens occur in presence of functional androgen receptor (AR) protein. Mutations of genes coding for steroidogenic enzymes, AMH, AMH receptor, AR and 5alpha reductase are all associated with impairment of sex differentiation and result in genital ambiguity.